O.P.Code: 20HS0834

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 NUMERICAL METHODS AND TRANSFORMS

т:-	(Electronics and Communication Engineering)	Mov '	Ma=1-	.a. 60
Time: 3 Hours (Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)				
	UNIT-I			
1	a Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.	CO1	L3	8M
	b hat is the algorithm for the bisection method. OR	CO1	L1	4M
2	a Estimate a real root of the equation $xe^{x} - cosx = 0$ by using Newton – Raphson method.	CO1	L4	10M
	b Write formula for Regula-falsi method. UNIT-II	CO1	L2	2M
3	a Tabulate $y(0.1)$ and $y(0.2)$ using Taylor's series method given that $y' = y^2 + 1$ and $y(0) = 1$.	CO2	L1	10M
	b State Taylor's series formula for first order differential equation. OR	CO2	L1	2M
4	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, $gi y' = y + e^x$, $y(0) = 0$.	CO2	L3	12M
	UNIT-III			
5	a Find the Laplace transform of $f(t) = (\sqrt{t + \frac{1}{\sqrt{t}}})^3$.	CO3	L3	6M
	b Find the Laplace transform of $f(t) = \cosh at \sin bt$ OR	CO3	L3	6M
6	a Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem.	CO3	L3	6M
	b Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$.	CO3	L3	6M
_	UNIT-IV	004		0.1
7	a Using Laplace transform method to solve $y' - y = t$, $y(0) = 1$. b Find the Fourier series for the function $f(x) = x$; in $-\pi < x < \pi$.	CO4 CO4	L3 L1	6M 6M
8	OR a Expand $f(x) = e^{-x}$ as a fourier series in the interval $(-1,1)$.	CO4	L2	6M
	b Expand $f(x) = x $ as a fourier series in the interval $(-2,2)$.	CO4		6M
9	Find the Fourier transform of $f(x) = e^{\frac{-x^2}{2}}$, $-\infty < x < \infty$	CO5	L1	6M
	b If $F(p)$ is the complex Fourier transform of $f(x)$, then prove that the	CO5	L5	6M
	complex Fourier transform of $f(x) = \cos ax$ is $\frac{1}{2}[F(p+a) + F(p-a)]$			
	a)]			
4.0	OR	007		407.5
10	Find the finite Fourier sine and cosine transform of $f(x)$ defined by $f(x) = 2x$ where $0 < x < 2\pi$.	CO5	L1	12M
	*** END ***			

.